Search

Thursday, April 12, 2007

INDIAN NATIONAL ANTHEM


 जन गण मन अधिनायाका जाया हे
भारत भाग्य विधाता
पूंजब सिंध गुजरात मरता
द्रविदा उत्काला बंगा
विन्ध्य हिमाचल यमुना गंगा

उच्चाला जलधि तरंगा
तुभ शुबहा नेम जगे
तुभ शुबहा आशीष मांगे
गाहे तुभ जाया गाता

जन गन मंगलदायक जय हे
भारत भाग्य विधाता
जाये हे ! जाये हे ! जाये हे

जाये,जाये,जाये,जाये हे
KYA HUM AISE GAATE HAIN? NAHIN NA-
TO PHIR EDIT UR COMPUTER'S SETTING
TO SEE IT CORRECTLY. USE THIS LINK:

ICAN'TSEEHINDI

MY DAY ON KBC


The story goes like this- One day I recieved an SMS from AIRTEL which had a question for entry to KBC's 34th episode. Totally unaware of what was waiting, I replied. Then came a call informing me that my answer was correct. I was asked if I would be willing to participate in India's favourite game show on KBC's expenses. Later in 2 stage a series of total 6 questions were asked to me on phone. I answered them correctly and lastly they confirmed my participation.

Starplus paid all the expenses including Air Ticket and Lodging.

I went to Bombay with my Mom n Dad. The same day we were supposed to shoot. We were taken to the KBC studio in Filmcity. Then excitement started bubbling inside me. They explained everything and after initial practice SRK entered the set. People really love him.

The question for FFF was asked and I answered it wrong. That meant - no hotseat for me. While playing for PlayAlong for the prize of 2 lakh rupees I answered 11 out 12 questions.

I returned back with a shattered dream. But then what kept me smiling could be described as
Happy the man, and happy he alone, he who can call today his own; he who, secure within, can say, tomorrow do thy worst, for I have lived today.

John Dryden (1631-1700) British poet, dramatist and critic.

HERE YOU CAN WATCH ME WHEN THE PARTICIPANTS ARE SHOWN.
NOTE: IT MAY TAKE SOME TIME TO BUFFER THE VIDEO.

Sunday, April 8, 2007

MICROPROCESSORS


The computer you are using to read this page uses a microprocessor to do its work. The microprocessor is the heart of any normal computer, whether it is a desktop machine, a server or a laptop. The microprocessor you are using might be a Pentium, a K6, a PowerPC, a Sparc or any of the many other brands and types of microprocessors, but they all do approximately the same thing in approximately the same way.
A microprocessor -- also known as a CPU or central processing unit -- is a complete computation engine that is fabricated on a single chip. The first microprocessor was the Intel 4004, introduced in 1971. The 4004 was not very powerful -- all it could do was add and subtract, and it could only do that 4 bits at a time. But it was amazing that everything was on one chip. Prior to the 4004, engineers built computers either from collections of chips or from discrete components (transistors wired one at a time). The 4004 powered one of the first portable electronic calculators.

If you have ever wondered what the microprocessor in your computer is doing, or if you have ever wondered about the differences between types of microprocessors, then read on. In this article, you will learn how fairly simple digital logic techniques allow a computer to do its job, whether its playing a game or spell checking a document!

Microprocessor Progression: Intel

The first microprocessor to make it into a home computer was the Intel 8080, a complete 8-bit computer on one chip, introduced in 1974. The first microprocessor to make a real splash in the market was the Intel 8088, introduced in 1979 and incorporated into the IBM PC (which first appeared around 1982). If you are familiar with the PC market and its history, you know that the PC market moved from the 8088 to the 80286 to the 80386 to the 80486 to the Pentium to the Pentium II to the Pentium III to the Pentium 4. All of these microprocessors are made by Intel and all of them are improvements on the basic design of the 8088. The Pentium 4 can execute any piece of code that ran on the original 8088, but it does it about 5,000 times faster!

The following table helps you to understand the differences between the different processors that Intel has introduced over the years.

Name
Date
Transistors
Microns
Clock speed
Data width
MIPS
8080
1974
6,000
6
2 MHz
8 bits
0.64
8088
1979
29,000
3
5 MHz
16 bits
8-bit bus
0.33
80286
1982
134,000
1.5
6 MHz
16 bits
1
80386
1985
275,000
1.5
16 MHz
32 bits
5
80486
1989
1,200,000
1
25 MHz
32 bits
20
Pentium
1993
3,100,000
0.8
60 MHz
32 bits
64-bit bus
100
Pentium II
1997
7,500,000
0.35
233 MHz
32 bits
64-bit bus
~300
Pentium III
1999
9,500,000
0.25
450 MHz
32 bits
64-bit bus
~510
Pentium 4
2000
42,000,000
0.18
1.5 GHz
32 bits
64-bit bus
~1,700
Pentium 4 "Prescott"
2004
125,000,000
0.09
3.6 GHz
32 bits
64-bit bus
~7,000

Compiled from The Intel Microprocessor Quick Reference Guide and TSCP Benchmark Scores

Information about this table:

    What's a Chip?
    A chip is also called an integrated circuit. Generally it is a small, thin piece of silicon onto which the transistors making up the microprocessor have been etched. A chip might be as large as an inch on a side and can contain tens of millions of transistors. Simpler processors might consist of a few thousand transistors etched onto a chip just a few millimeters square.

  • The date is the year that the processor was first introduced. Many processors are re-introduced at higher clock speeds for many years after the original release date.
  • Transistors is the number of transistors on the chip. You can see that the number of transistors on a single chip has risen steadily over the years.
  • Microns is the width, in microns, of the smallest wire on the chip. For comparison, a human hair is 100 microns thick. As the feature size on the chip goes down, the number of transistors rises.
  • Clock speed is the maximum rate that the chip can be clocked at. Clock speed will make more sense in the next section.
  • Data Width is the width of the ALU. An 8-bit ALU can add/subtract/multiply/etc. two 8-bit numbers, while a 32-bit ALU can manipulate 32-bit numbers. An 8-bit ALU would have to execute four instructions to add two 32-bit numbers, while a 32-bit ALU can do it in one instruction. In many cases, the external data bus is the same width as the ALU, but not always. The 8088 had a 16-bit ALU and an 8-bit bus, while the modern Pentiums fetch data 64 bits at a time for their 32-bit ALUs.
  • MIPS stands for "millions of instructions per second" and is a rough measure of the performance of a CPU. Modern CPUs can do so many different things that MIPS ratings lose a lot of their meaning, but you can get a general sense of the relative power of the CPUs from this column.
From this table you can see that, in general, there is a relationship between clock speed and MIPS. The maximum clock speed is a function of the manufacturing process and delays within the chip. There is also a relationship between the number of transistors and MIPS. For example, the 8088 clocked at 5 MHz but only executed at 0.33 MIPS (about one instruction per 15 clock cycles). Modern processors can often execute at a rate of two instructions per clock cycle. That improvement is directly related to the number of transistors on the chip and will make more sense in the next section.

Microprocessor Logic


To understand how a microprocessor works, it is helpful to look inside and learn about the logic used to create one. In the process you can also learn about assembly language -- the native language of a microprocessor -- and many of the things that engineers can do to boost the speed of a processor.

A microprocessor executes a collection of machine instructions that tell the processor what to do. Based on the instructions, a microprocessor does three basic things:

  • Using its ALU (Arithmetic/Logic Unit), a microprocessor can perform mathematical operations like addition, subtraction, multiplication and division. Modern microprocessors contain complete floating point processors that can perform extremely sophisticated operations on large floating point numbers.
  • A microprocessor can move data from one memory location to another.
  • A microprocessor can make decisions and jump to a new set of instructions based on those decisions.
There may be very sophisticated things that a microprocessor does, but those are its three basic activities. The following diagram shows an extremely simple microprocessor capable of doing those three things:

This is about as simple as a microprocessor gets. This microprocessor has:
  • An address bus (that may be 8, 16 or 32 bits wide) that sends an address to memory
  • A data bus (that may be 8, 16 or 32 bits wide) that can send data to memory or receive data from memory
  • An RD (read) and WR (write) line to tell the memory whether it wants to set or get the addressed location
  • A clock line that lets a clock pulse sequence the processor
  • A reset line that resets the program counter to zero (or whatever) and restarts execution
Let's assume that both the address and data buses are 8 bits wide in this example.

Here are the components of this simple microprocessor:

  • Registers A, B and C are simply latches made out of flip-flops. (See the section on "edge-triggered latches" in How Boolean Logic Works for details.)
  • The address latch is just like registers A, B and C.
  • The program counter is a latch with the extra ability to increment by 1 when told to do so, and also to reset to zero when told to do so.
  • The ALU could be as simple as an 8-bit adder (see the section on adders in How Boolean Logic Works for details), or it might be able to add, subtract, multiply and divide 8-bit values. Let's assume the latter here.
  • The test register is a special latch that can hold values from comparisons performed in the ALU. An ALU can normally compare two numbers and determine if they are equal, if one is greater than the other, etc. The test register can also normally hold a carry bit from the last stage of the adder. It stores these values in flip-flops and then the instruction decoder can use the values to make decisions.
  • There are six boxes marked "3-State" in the diagram. These are tri-state buffers. A tri-state buffer can pass a 1, a 0 or it can essentially disconnect its output (imagine a switch that totally disconnects the output line from the wire that the output is heading toward). A tri-state buffer allows multiple outputs to connect to a wire, but only one of them to actually drive a 1 or a 0 onto the line.
  • The instruction register and instruction decoder are responsible for controlling all of the other components.
  • Although they are not shown in this diagram, there would be control lines from the instruction decoder that would:
  • Tell the A register to latch the value currently on the data bus
  • Tell the B register to latch the value currently on the data bus
  • Tell the C register to latch the value currently output by the ALU
  • Tell the program counter register to latch the value currently on the data bus
  • Tell the address register to latch the value currently on the data bus
  • Tell the instruction register to latch the value currently on the data bus
  • Tell the program counter to increment
  • Tell the program counter to reset to zero
  • Activate any of the six tri-state buffers (six separate lines)
  • Tell the ALU what operation to perform
  • Tell the test register to latch the ALU's test bits
  • Activate the RD line
  • Activate the WR line
Coming into the instruction decoder are the bits from the test register and the clock line, as well as the bits from the instruction register.

Microprocessor Memory

The previous section talked about the address and data buses, as well as the RD and WR lines. These buses and lines connect either to RAM or ROM -- generally both. In our sample microprocessor, we have an address bus 8 bits wide and a data bus 8 bits wide. That means that the microprocessor can address (28) 256 bytes of memory, and it can read or write 8 bits of the memory at a time. Let's assume that this simple microprocessor has 128 bytes of ROM starting at address 0 and 128 bytes of RAM starting at address 128.

ROM stands for read-only memory. A ROM chip is programmed with a permanent collection of pre-set bytes. The address bus tells the ROM chip which byte to get and place on the data bus. When the RD line changes state, the ROM chip presents the selected byte onto the data bus.
RAM stands for random-access memory. RAM contains bytes of information, and the microprocessor can read or write to those bytes depending on whether the RD or WR line is signaled. One problem with today's RAM chips is that they forget everything once the power goes off. That is why the computer needs ROM.
By the way, nearly all computers contain some amount of ROM (it is possible to create a simple computer that contains no RAM -- many microcontrollers do this by placing a handful of RAM bytes on the processor chip itself -- but generally impossible to create one that contains no ROM). On a PC, the ROM is called the BIOS (Basic Input/Output System). When the microprocessor starts, it begins executing instructions it finds in the BIOS. The BIOS instructions do things like test the hardware in the machine, and then it goes to the hard disk to fetch the boot sector (see How Hard Disks Work for details). This boot sector is another small program, and the BIOS stores it in RAM after reading it off the disk. The microprocessor then begins executing the boot sector's instructions from RAM. The boot sector program will tell the microprocessor to fetch something else from the hard disk into RAM, which the microprocessor then executes, and so on. This is how the microprocessor loads and executes the entire operating system.

Microprocessor Performance and Trends

The number of transistors available has a huge effect on the performance of a processor. As seen earlier, a typical instruction in a processor like an 8088 took 15 clock cycles to execute. Because of the design of the multiplier, it took approximately 80 cycles just to do one 16-bit multiplication on the 8088. With more transistors, much more powerful multipliers capable of single-cycle speeds become possible.

More transistors also allow for a technology called pipelining. In a pipelined architecture, instruction execution overlaps. So even though it might take five clock cycles to execute each instruction, there can be five instructions in various stages of execution simultaneously. That way it looks like one instruction completes every clock cycle.

Many modern processors have multiple instruction decoders, each with its own pipeline. This allows for multiple instruction streams, which means that more than one instruction can complete during each clock cycle. This technique can be quite complex to implement, so it takes lots of transistors.

Trends
The trend in processor design has primarily been toward full 32-bit ALUs with fast floating point processors built in and pipelined execution with multiple instruction streams. The newest thing in processor design is 64-bit ALUs, and people are expected to have these processors in their home PCs in the next decade. There has also been a tendency toward special instructions (like the MMX instructions) that make certain operations particularly efficient, and the addition of hardware virtual memory support and L1 caching on the processor chip. All of these trends push up the transistor count, leading to the multi-million transistor powerhouses available today. These processors can execute about one billion instructions per second!